VLSI IEEE Project Titles List

<table>
<thead>
<tr>
<th>S.NO</th>
<th>CODE</th>
<th>Titles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VLSIL01</td>
<td>IMPACT OF RANDOM DOPANT FLUCTUATIONS ON THE TIMING CHARACTERISTICS OF FLIP-FLOPS</td>
</tr>
<tr>
<td>2</td>
<td>VLSIL02</td>
<td>LOW POWER DUAL EDGE TRIGGERED FLIP-FLOP</td>
</tr>
<tr>
<td>3</td>
<td>VLSIL03</td>
<td>IMPLEMENTATION OF FULL ADDER CELLS USING NP-CMOS AND MULTI-OUTPUT LOGIC STYLES IN 90NM TECHNOLOGY</td>
</tr>
<tr>
<td>4</td>
<td>VLSIL04</td>
<td>DESIGN OF LOW POWER HIGH SPEED VLSI ADDER SUBSYSTEM</td>
</tr>
<tr>
<td>5</td>
<td>VLSIL05</td>
<td>DELAY BASED DUAL RAIL PRECHARGE LOGIC</td>
</tr>
<tr>
<td>6</td>
<td>VLSIL06</td>
<td>AN ENERGY EFFICIENT SECURE LOGIC TO PROVIDE RESISTANCE AGAINST DIFFERENTIAL POWER ANALYSIS ATTACKS</td>
</tr>
<tr>
<td>7</td>
<td>VLSIL07</td>
<td>POWER-EFFICIENT EXPLICIT-PULSED DUAL-EDGE TRIGGERED SENDAMIPLIER FLIP-FLOPS</td>
</tr>
<tr>
<td>8</td>
<td>VLSIL08</td>
<td>PERFORMANCE ANALYSIS OF POWER GATING DESIGNS IN LOW POWER VLSI CIRCUITS</td>
</tr>
<tr>
<td>9</td>
<td>VLSIL09</td>
<td>LOW POWER VLSI CIRCUIT IMPLEMENTATION USING MIXED STATIC CMOS AND DOMINO LOGIC WITH DELAY ELEMENTS</td>
</tr>
<tr>
<td>10</td>
<td>VLSIL10</td>
<td>ENERGY RECOVERY PERFORMANCE OF QUASI-ADIABATIC CIRCUITS USING LOWER TECHNOLOGY NODES</td>
</tr>
<tr>
<td>No.</td>
<td>VLSIL</td>
<td>Title</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>11</td>
<td>VLSIL11</td>
<td>POWER COMPARISON OF CMOS AND ADIABATIC FULL ADDER CIRCUITS</td>
</tr>
<tr>
<td>12</td>
<td>VLSIL12</td>
<td>DESIGN OF SEQUENTIAL ELEMENTS FOR LOW POWER CLOCKING SYSTEM</td>
</tr>
<tr>
<td>13</td>
<td>VLSIL13</td>
<td>LOW-VOLTAGE AND LOW-POWER CONSUMPTION 0.35UM CMOS VOLTAGE-MODE DEFUZZIFIER</td>
</tr>
<tr>
<td>14</td>
<td>VLSIL14</td>
<td>ENERGY EFFICIENT ADIABATIC LOGIC FOR LOW POWER VLSI APPLICATIONS</td>
</tr>
<tr>
<td>15</td>
<td>VLSIL15</td>
<td>BZ-FAD: A LOW-POWER LOW-AREA MULTIPLIER BASED ON SHIFT-AND-ADD ARCHITECTURE</td>
</tr>
<tr>
<td>16</td>
<td>VLSIL16</td>
<td>LOW-POWER AES DESIGN USING PARALLEL ARCHITECTURE</td>
</tr>
<tr>
<td>17</td>
<td>VLSIL17</td>
<td>LOW POWER FFT DESIGN FOR WIRELESS COMMUNICATION SYSTEMS</td>
</tr>
<tr>
<td>18</td>
<td>VLSIL18</td>
<td>ESTIMATING POWER CONSUMPTION FOR FIR FILTER IMPLEMENTATION ON FPGA</td>
</tr>
<tr>
<td>19</td>
<td>VLSIL19</td>
<td>A BIST TPG FOR LOW POWER DISSIPATION AND HIGH FAULT COVERAGE</td>
</tr>
<tr>
<td>20</td>
<td>VLSIL20</td>
<td>LOW POWER STATE-PARALLEL RELAXED ADAPTIVE VITERBI DECODER DESIGN AND IMPLEMENTATION</td>
</tr>
<tr>
<td>21</td>
<td>VLSIL21</td>
<td>FPGA IMPLEMENTATION OF LOW POWER PARALLEL MULTIPLIER</td>
</tr>
<tr>
<td>22</td>
<td>VLSIL22</td>
<td>LOW POWER FPGA-BASED IMPLEMENTATION OF DECIMATING FILTERS FOR MULTISTANDARD RECEIVER</td>
</tr>
<tr>
<td>23</td>
<td>VLSIL23</td>
<td>AN EFFICIENT SPURIOUS POWER SUPPRESSION TECHNIQUE (SPST) AND ITS APPLICATIONS ON MPEG-4 AVCLH.264 TRANSFORM CODING DESIGN</td>
</tr>
<tr>
<td>24</td>
<td>VLSIL24</td>
<td>A LOW-POWER VITERBI DECODER DESIGN FOR WIRELESS COMMUNICATIONS APPLICATIONS</td>
</tr>
</tbody>
</table>